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Recent studies suggest that a nitric  oxide (NO) deficiency and ele- 

vated  arginase  activity  may  play  a role  in  the  pathogenesis  of 

asthma. Although much attention has been directed  toward  mea- 

surements of exhaled NO in asthma, no studies to date have evalu- 

ated levels of plasma arginase or arginine,  the substrate for NO 

production, in patients  with  asthma. This study, therefore,  mea- 

sured amino acid levels, arginase activity,  and nitric  oxide metabo- 

lites in the blood of patients with  asthma, as well as NO in exhaled 

breath.  Although levels of virtually all amino acids were reduced, 

patients with  asthma exhibited a striking  reduction in plasma argi- 

nine levels compared with  normal control  subjects without asthma 

(45 ± 22 vs. 94 ± 29 �-tM, p < 0.0001), and serum arginase activity 

was elevated  (1.6 ± 0.8 vs. 0.5 ± 0.3 �-tmol/ml/hour, asthma vs. 

control,  p < 0.0001). High arginase activity in patients with asthma 

may contribute to low circulating arginine  levels, thereby  limiting 

arginine  bioavailability and creating  a NO deficiency  that  induces 

hyperreactive airways. Addressing the alterations  in arginine  me- 

tabolism  may result in new strategies for treatment of asthma. 
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synthase 
 

Inflammation plays a central  role in the pathogenesis of asthma 
(1, 2), a major disease that is characterized by a variable degree of 

airflow obstruction, bronchial hyperresponsiveness, and airway 
remodeling (1, 3, 4). Much of the inflammation can be attributed 

to helper  T cell type 2 cytokine  activation  (5, 6), the degree  of 
which strongly correlates to disease severity (7). One of the 

inflammatory mediators that has received considerable attention 
in asthma  is nitric oxide (NO),  which is produced from arginine 

by NO synthases  (8). NO is an important vasodilator of the 
bronchial circulation  (9), with both bronchodilatory (10–12) and 

antiinflammatory properties (13).  Recent studies  suggest  that 
asthma  may be a condition of decreased NO bioavailability (14–

18), rather than overproduction as a result of inflammation (19–
22). This may occur in part  as a result  of pathologically ele- 

vated  activity  of  arginase  (23–25),  an  enzyme  that  hydrolyzes 
arginine  to ornithine and urea. Arginase expression  is induced  by 

helper  T cell type 2 cytokines (26–29), making it a potentially 
important enzyme to study in asthma.  As both  arginase  and NO 

synthase use arginine as a common substrate, arginase may play a 
role in regulating NO synthesis by modulating arginine availability 

(27–29). In addition,  arginase generates ornithine that can serve 
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as  a  precursor for  synthesis  of  proline  and  polyamines   (30), 

which can contribute to airway remodeling in chronic asthma by 

supporting collagen synthesis and cell proliferation, respectively 

(16, 25). Increased arginase  activity or expression  has been  re- 

ported in lungs of guinea-pig  (24) and  murine  (25)  models  of 

allergic  asthma,  and  in lungs of individuals  with  asthma  (25). 

The recent discovery of “asthma signature  genes” through mi- 

croarray  analysis identified  overexpression of several  genes in- 

volved in arginine metabolism, including arginase (25), thus, 

supporting a  role  for  arginase  and  its  metabolic   products  in 

asthma. 

Much  attention has been  directed  toward  measurements of 

exhaled  NO in asthma,  as it is widely regarded as a marker of 

airway  inflammation, with  high  levels  found  in both  children 

and adults with asthma  (21, 22, 31–33). NO synthase-dependent 

generation of S-nitrosothiols, potentially the largest pool of NO 

bioactivity  in the lung (34, 35), has also been  studied  in asthma 

as a noninvasive  biomarker of nitrosative stress (36, 37). How- 

ever, no studies of individuals with asthma to date have evaluated 

circulating levels of arginine,  the substrate for NO synthase, 

together with arginese  activity. Since decreased arginine  bio- 

availability  may play a role  in the  pathophysiology of asthma 

by contributing to an endogenous NO deficiency, we measured 

amino  acid levels and arginase  activity in the blood  of patients 

with asthma, as well as NO in exhaled breath. Our results support 

a role for reduced arginine bioavailability and increased arginase 

activity in asthma. 

Some results of this study have been previously reported in 

abstract form  (38, 39), and  some  of the  control  data  were  in- 

cluded  among  control  data  in another manuscript (40). 

 
METHODS 
 

Patients 

Twenty-six patients with a history of asthma in varying stages of exacer- 

bation  were enrolled in the study. Asthma was defined by a past history 

of at least three episodes of wheezing. An asthma exacerbation was 

characterized by a worsening  of asthma  symptoms, which included  one 

or  more  of the  following:  wheezing,  tachypnea, shortness of breath, 

cough,  retractions, and/or  hypoxia.  No patients were  on systemic  ste- 

roids at the time of enrollment, and no patients were receiving intrave- 

nous crystalloid  fluid at the time of the study blood  draw. Only 5 of 26 

patients were using controller medication, four of whom were on a 

regimen  of daily inhaled  steroid  (fluticasone propionate). Two of these 

patients were  also  on  the  leukotriene inhibitor montelukast sodium, 

one  of whom  had  a history  of a previous  admission  to  the  intensive 

care  unit  and  intubation for life-threatening asthma.  One  patient was 

on montelukast monotherapy, and all patients reported using albuterol 

as a rescue  medication within  24 hours  of presentation. 

Treatment at the time of enrollment varied from albuterol adminis- 

tration via meter  dose inhaler  and use of inhaled  steroids, to continuous 

albuterol nebulization (5 to 20 mg/hour), nebulized ipatropium bromide 

(0.25–0.5 mg), and oral steroids  (2 mg/kg prednisolone) as clinically 

warranted. Patients not  tolerating oral  prednisolone due  to emesis  or 

respiratory distress received intravenous methylprednisolone (2 mg/kg) 
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or intravenous dexamethasone (0.3–0.5 mg/kg). All patients admitted to 

the hospital received systemic steroids and at least 2 hours of continuous 
Exhaled NO 

NO was measured in exhaled  air, using microprocessor-based chemilu- 
nebulized albuterol in the emergency department. Steroids were contin- 

ued  throughout the  hospital   admission, and  albuterol was  used  as minescent NOx analytical  instrumentation (Sievers  Instruments, Inc.), 

needed. One  patient decompensated shortly  after arriving on the ward 

and was subsequently transferred to the intensive  care unit. The mean 

age was 14 ± 12 years,  with a median  age of 10 years,  and  a range  of 

2 to 52 years. Fourteen patients were male, and 16 patients were admit- 

ted to the hospital  for status  asthmaticus. Four  families agreed  to daily 

venipuncture during hospitalization. Fifteen individuals without asthma 

were enrolled as normal  control  subjects  for comparison. Patients with 

a history  of allergies, atopy,  nocturnal cough, coughing  with upper 

respiratory infections,  or any chronic  medical  condition were excluded 

from participation as a normal  control.  The mean age of normal  control 

subjects,  nine  of whom  were  male,  was 14 ± 9 years,  with  a median 

age  of  12 years  and  a  range  of  2 to  34 years.  All  control   subjects 

provided blood samples and 14 subjects provided exhaled  NO samples. 

The  study  protocol was approved by the  Institutional Review  Board 

at Children’s  Hospital and Research Center at Oakland, and informed 

consent  was obtained for all patients. 
 

Study Design 

Patients at least two years of age with asthma,  defined by a past history 

of three  or  more  episodes  of wheezing,  were  recruited for  this  study 

from the Emergency Department or Pediatric Clinical Research Center 

at Children’s  Hospital and Research Center at Oakland during an acute 

exacerbation of symptoms. Patients enrolled had  a  range  of disease 

activity and degree of exacerbation, from mild to severe. Treatment was 

based on the severity of symptoms, and was not altered by enrollment in 

this  study.  Clinical  improvement was  characterized by the  ability  to 

wean  from  continuous nebulized albuterol to  intermittent treatments 

at least  three  hours  apart,  normalized oxygen  saturation on room  air, 

and/or  improved clinical respiratory status  warranting discharge from 

the hospital.  Exhaled NO samples  were obtained in triplicate from all 

patients mature enough  to properly perform the  maneuver described 

below, or whose respiratory distress did not prohibit an accurate sample 

(n = 22). Blood  was collected  for determinations of amino  acids, argi- 

nase  activity, and  NO metabolite levels. Daily  levels were followed  in 

consenting patients admitted to the  hospital.  Information on signs, 

symptoms, asthma triggers, and medication use was obtained on patients 

by the  study  nurse.  Routine asthma  care  was not  modified  as a result 

of study  participation. 
 

Amino Acid Measurement 

Plasma amino acids were quantified at the Molecular Structure Facility, 

University of California, Davis, California. Proteins were removed from 

plasma  samples  by precipitation with sulfosalicylic acid. Plasma  amino 

acids were separated by ion exchange chromatography on a Beckman 

model  6300 amino  acid  analyzer (Beckman, Fullerton, CA)  using  a 

lithium citrate buffer system, and quantified by a post-column ninhydrin 

detection system,  using methods recommended by the  manufacturer. 
 

Arginase Activity 

Arginase activity  was determined as the conversion of [14C]guanidino- 

l-arginine  to  [14C]urea,  which  was converted to  14CO2    by urease  and 

trapped as Na 14CO   for scintillation counting,  as described previously 

(41).  Briefly,  50À aliquots   of  serum  samples  were  incubated for  10 

minutes  at 55°C in complete assay mixtures  lacking arginine.  The reac- 

tion  was initiated by addition of labeled  arginine,  and  incubation was 
continued at 37°C for 2 hours.  The reaction was terminated by heating 
at  100°C for  3 minutes.  Samples  were  incubated with  urease  at  37°C 

for 45 minutes,  and  Na 14CO   was trapped on NaOH-soaked filters 

following  acidification  of the samples  with HCl to volatilize  the 14CO2. 
 

NO Metabolite Measurement 
 

The  formation of NO  metabolites was measured by determination of 
its  stable  end  products in  serum;  nitrite  (NO2

-)  and  nitrate (NO3
-) 

in  J.mol/liter, according  to  manufacturer’s instructions using  Sievers 

NOAnalysis software for liquid sampling (Sievers Instruments, Boulder, 

CO),  as previously  described (42). 

as previously  described (43, 44). Subjects inhaled  to total lung capacity, 

and then exhaled  to residual  volume  into the Teflon tube, which enters 

into a 1.5 liter  Mylar balloon  (Sievers  Instruments, Inc.) at a pressure 

of +20 mm Hg. Exhalation at this expiratory pressure without  a nose 

clip is a maneuver that  closes the velum of the  posterior nasopharynx 

and excludes  contamination by nasal NO (45). Balloons  are then  con- 

nected  to the  Sievers  NO  Analyzer to measure the  content of NO  in 

the  trapped air sample  by luminescence as above.  The  results  are  ex- 

pressed  as ppb.  Triplicate balloon  samples  were  obtained from  each 

patient. Time between collection and measurement did not affect results 

up to a 24-hour  period.  The  mean  ± SD was determined for each  set 

of three  balloons. 
 
Statistical Analysis 

Results  are  expressed as means  ± SD. The  unpaired and  paired  Stu- 

dent’s  t test  and  Pearson correlation were  used  when  appropriate to 
evaluate statistical significance. A p value � 0.05 was considered statisti- 

cally significant  (46). 

 
RESULTS 
 

Amino Acid Levels 

Reductions occurred in plasma  levels of many  amino  acids in 

patients with asthma experiencing an acute exacerbation of respi- 

ratory symptoms (Table 1). Strikingly, the greatest decrease was 

in plasma levels of arginine, which were approximately half those 

of normal  control  subjects  (45 ± 22 J.M vs. 94 ± 29 J.M; p < 
0.0001) (Figure  1A). 

As  arginine,  ornithine, and  lysine  are  taken  up  by cells via 
the same y+ transport system (47), the ratio  of arginine  to orni- 
thine  plus  lysine,  i.e.,  arginine/ornithine + lysine,  provides  an 

index of relative arginine availability at any given plasma arginine 
 
 
 
TABLE 1. PLASMA AMINO  ACIDS IN  NORMAL CONTROLS 
VERSUS  PATIENTS WITH  ASTHMA 

Concentration (J.M) 

Controls Asthma 

Amino Acid                      (n = 15)           (n = 26)         % Control        p Value 
 

Ornithine  64 ± 21  49 ± 24  77   NS 

Citrulline  30 ± 6  21 ± 10  70   0.002 

Proline                            195 ± 66         144 ± 73                74                0.03 

Hydroxyproline                 29 ± 14           19 ± 9                  66                0.02 

Lysine                             162 ± 33         112 ± 57                69                0.004 

Glutamic Acid                   55 ± 29           40 ± 16                73                0.04 

Glutamine                       554 ± 86         466 ± 148              84                0.04 

Glycine                           251 ± 64         186 ± 103              74                0.03 

Alanine                           369 ± 104       292 ± 96                79                0.02 

Valine                             223 ± 52         161 ± 51                72            < 0.001 

Aspartic Acid                      9 ± 6               7 ± 1                  78                0.04 

Threonine                       136 ± 29           99 ± 58                73                0.02 

Isoleucine                         66 ± 20           48 ± 23                73                0.01 

Leucine                          126 ± 32           96 ± 45                76                0.03 

Tyrosine                           72 ± 15           52 ± 20                72                0.002 

Histidine                           75 ± 10           57 ± 20                79                0.003 

Cysteine                           22 ± 13           20 ± 16                90                 NS 

Asparagine                       35 ± 15           41 ± 18*             118                 NS 

Serine                             107 ± 32           89 ± 64                83                 NS 

Tryptophan                       45 ± 10           37 ± 15                82                 NS 

Methionine                       25 ± 6             20 ± 13                80                 NS 

Phenylalanine                  57 ± 13           56 ± 17                98                 NS 

Definition of abbreviation:  NS = not significant. 

Concentrations of amino acids are expressed  as means ± SD. 

% control values are the percent of the control for the asthma group. 

* n = 25. 
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Figure 1.  Plasma arginine concentra- 

tion and relative arginine availability in 

normal control subjects compared with 

patients with asthma. (A ) Plasma argi- 

nine concentration (J.M)  was low in 

patients with asthma experiencing an 
acute exacerbation (n = 26) compared 

with normal control subjects without 
asthma (n = 15; p < 0.0001). (B ) Val- 

ues of relative arginine availability, ex- 
pressed as plasma arginine/ornithine + 

lysine, in normal control subjects and 

patients with  asthma differed signifi- 

cantly (p < 0.05). Mean values are indi- 

cated by the horizontal lines. 
 

 
 
 
 

concentration. Relative   arginine   availability  also  was  signifi- 
cantly  lower  in  patients with  asthma   compared with  normal 

control  subjects (0.30 ± 0.13 vs. 0.42 ± 0.14, p < 0.005) (Figure 
1B), further  limiting arginine  availability  in the asthma  group. 

Plasma  levels of ornithine (Table  1), a product of arginine 
catabolism, were generally lower in patients with asthma relative 
to control subjects, and relative ornithine availability, ornithine/ 

arginine  + lysine, was somewhat  higher in patients with asthma 
than  in control  subjects  (0.25 ± 0.07 for  control  subjects  and 

0.34 ± 0.17 for patients with asthma), but neither of these trends 
reached statistical significance. On the other hand, citrulline, the 

precursor of endogenous arginine  synthesis, was significantly 
reduced in patients with asthma  relative  to normal  control  sub- 

jects (Table  1), possibly contributing to the decrease in plasma 
arginine  levels in these  patients. 

 
Arginase Activity 

 
Serum  arginase  activity  was increased significantly  in patients 
with asthma  versus normal  control  subjects  (1.62 ± 0.83 J.mol/ 
ml/hour  vs. 0.51 ± 0.34 J.mol/ml/hour, p < 0.0001) (Figure  2) 

Although plasma  arginine  levels declined  and  plasma  arginase 
activities increased in patients with asthma as a group, no signifi- 
cant  correlations between  arginase  activity  and  arginine,  orni- 

thine, or other amino acids were identified when values for 
individual  patients were analyzed. 

 
NO 

Consistent with previously  published data (21, 22, 31–33, 44), 

exhaled  NO  levels  in  patients with  asthma  were  significantly 
higher than  those of normal  control  subjects (36 ± 18 ppb, n = 
22 vs. 16 ± 8 ppb,  n = 14; p < 0.001), despite  the  paradoxical 
decline in plasma arginine levels. There was no significant differ- 

ence  in NO  metabolites in the  serum  of patients with asthma 
versus normal  control  subjects (29.8 ± 27 J.M, n = 23 vs. 27.2 ± 
9 J.M, n = 13). 

 
 
 
 

Figure 2.  Serum  arginase activities 
(J.mol/ml/hour) in normal control 

subjects (n = 15) and patients with 

asthma (n = 21). Values are signifi- 

cantly different (p < 0.0001). Mean 

values are indicated by the horizontal 

lines. 

Admission versus Discharge 

Ten  patients  were  acutely  treated and  managed  as outpatients, 

and  16 patients   were  admitted to  the  hospital  for  respiratory 

distress and status asthmaticus. Both groups had similar arginine, 

ornithine, and arginase activity levels. Proline concentrations were 

significantly lower in the group of patients  with asthma  admitted 

to the  hospital  versus  those  discharged to home  (120 ± 79 J.M 

vs. 182 ± 46 J.M, p = 0.04). All other  amino  acids measured, 

except  cysteine  (12 ± 13 J.M,  n = 12 vs. 31 ± 14 J.M,  n = 9; 

p = 0.005) and  lysine (93 ± 52 J.M,  n = 16 vs. 144 ± 52 J.M, 

n = 10; p = 0.02) (admit vs. discharge)  were similar in both groups. 
Sequential amino acid data was obtained on four of the admit- 

ted patients. Plasma arginine  levels were low on the day of 

admission and consistently  increased by discharge from the hos- 

pital  in  all  patients (Figure   3A).  There   were  no  consistent 

changes  in relative  arginine  availability;  two patients had  clear 

increases,  whereas two other  patients exhibited  no change (Fig- 

ure 3B). Progressive increases in most individual amino acids 

occurred during  hospitalization. Serial  arginase  activities  were 

available  for two patients and showed  substantial declines  into 

the normal range by discharge in each case (Figure 3C), as serum 

NOx   levels increased (26.6 to 37.2 J.M in Patient 1, and 23.9 to 
70.7 J.M in Patient 4). 

 
DISCUSSION 
 

This  is the  first  report of  a  systemic  arginine  deficiency  and 

elevated  serum arginase activity in asthma. Because arginine 

deficiency  is not  confined  to  pulmonary tissue  in this  disease, 

this suggests that consequences of such a deficiency also are not 

confined to the lungs. It is important to note that relative arginine 

availability, as well as absolute  arginine availability, is reduced in 

patients with asthma experiencing an acute clinical exacerbation. 

Thus,  the  arginine  to  ornithine + lysine  ratio  also  should  be 
 

 
 
 
 
 
 
 
 

Figure 3.  (A )   Changes  in 

plasma arginine concentra- 

tion,   (B )  relative  arginine 

availability, and (C ) serum ar- 

ginase activity, in patients 

with asthma between admis- 

sion (Day 1) and the day of 

discharge from the hospital 

(Discharge). Levels normal- 

ized as the patients improved 

clinically. High arginase activ- 

ity in patients with asthma 

may contribute to low circu- 

lating arginine levels, thereby 

limiting arginine bioavail- 

ability and potentially ex- 

acerbating a NO deficiency 

that induces hyperreactive 

airways. 
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taken  into account when evaluating  overall arginine availability. 

We cannot, however, conclude that intracellular pools of arginine 

are everywhere reduced in asthma because the status of arginine 

transport activity  in patients with asthma  is unknown.  In fact, 

expression  of the  arginine  transporter CAT-2  (cationic  amino 

acid transporter) is increased in murine  models  of asthma  (25), 

suggesting  that,  at  least  in  some  cells,  increased uptake   may 

offset reductions in circulating  arginine  levels. Consistent with 

this notion,  one study found that intracellular levels of arginine 

in airway epithelial cells of patients with asthma were over three- 

fold higher  than  in cells of healthy  control  subjects;  however, 

plasma  arginine  levels were not determined in this study (48). 

With  recent  studies  supporting the  role  of a NO  deficiency 

in airway hyperreactivity (14, 15), our  findings have significant 

clinical relevance and represent a new focus for asthma research 

(16). Decreased arginine  levels may reflect substrate depletion 

owing to  increased demand for NO  in asthmatics  to maintain 

basal bronchodilator tone while compensating for increased NO 

consumption during  oxidative  stress, combined  with an inflam- 

matory-mediated induction of arginase activity during exacerba- 

tions. However,  the  data  also illustrate  a biological  paradox  in 

that  exhaled  NO  increases  in  acute  asthma   despite  elevated 

arginase  activity and decreases in circulating arginine  levels. 

Increased levels of exhaled NO could reflect metabolism of argi- 

nine from a compartmentalized pool in which arginine  content 

is not reflected  by circulating arginine levels, as suggested by 

increases in intracellular arginine levels in the study noted above 

(48). An  alternate explanation for increased levels of exhaled 

NO independent of arginine availability is nonenzymatic genera- 

tion of NO from nitrite  due to airway acidification  in asthmat- 

ics (49). 

Reduced arginine  availability  may  also  contribute to  lung 

injury by promoting formation of cytotoxic reactive  NO species 

such as peroxynitrite. As arginine  levels decline,  NO  synthase 

itself can begin to generate superoxide in lieu of NO (50), thereby 

favoring  NO  consumption via the  generation of peroxynitrite 

that could induce lung injury (50–52). This reduction in bioavail- 

ability of NO via formation of species such as peroxynitrite could 

be further  amplified  by the  rapid  loss of superoxide dismutase 

activity during the asthmatic response (53, 54). Such a model 

would also help explain  reduced NO bioavailability in the face 

of increased expression  of inducible NO synthase in asthma (55). 

Increased catabolism of arginine  via arginase  in asthmatic 

lungs may not  only compromise the  ability  to  synthesize  NO, 

but also may contribute to airway remodeling through increased 

production of ornithine, a precursor for synthesis of proline  and 

polyamines (30). These downstream products of arginase activity 

may play a role in the pathogenesis of asthma  by promoting 

collagen  synthesis and cell proliferation (16, 25), processes  that 

occur in airway wall thickening  and airway remodeling (1, 3, 4, 

56). The increased production of ornithine also may be reflected 

in the increased levels of polyamines  found  in peripheral blood 

of asthmatics  (57). 

Although our present data on this point  is anecdotal, it is of 

interest  to  note  that  plasma  arginase  activity  declined  signifi- 

cantly with treatment and improvement of symptoms. Additional 

studies   are  needed  to  determine  whether   measurements  of 

plasma arginase activity will provide a useful marker for underly- 

ing metabolic  disorder  and efficacy of treatment for this disease. 

Although the patients were not controlled for diet, it is also 

interesting to note that an increase in serum NO metabolites 

occurred by discharge,  despite  the  antiinflammatory effects  of 

steroid  therapy,  a treatment that  suppresses  inducible  NO syn- 

thase activity that patients with asthma  routinely  receive during 

hospitalization. It is possible that the increase in NO metabolites 

is a reflection  of decreased arginase  activity and improved argi- 

nine bioavailability. 

The arginase  activity present in serum probably  does not 

accurately reflect whole body arginase activity or that compart- 

mentalized in the lungs, since the arginases are intracellular 

enzymes that appear in circulation  only after cell damage  or cell 

death.  The  cell  types  that  contribute to  the  elevated   plasma 

arginase  in asthmatics  have  not  been  identified.  However,  as 

arginase  is induced  in monocytes in response to helper  T cell 

type 2 cytokines  (27, 28), we speculate  that  these  cells are one 

likely source  of the elevated  arginase  in serum,  consistent  with 

the  localization  of arginase  expression  within  macrophages in 

lungs of asthmatic mice (25). 

Although the greatest amino acid deficiency occurred for 

arginine, deficiencies of virtually all other amino acids also oc- 

curred  in the  group  with  asthma,  similar  to  previous  findings 

(58).  A  poor  nutritional status  at  the  time  of analysis  due  to 

illness could contribute to these deficiencies. However,  it is also 

possible  that  altered  amino  acid  metabolism occurs  during  an 

asthma exacerbation, perhaps as a consequence of inflammation. 

Concentrations of amino  acids rose during  hospitalization, sug- 

gesting  that  the  altered   amino  acid  profile  occurs  during  the 

acute event. Thus, patients with asthma  may benefit from more 

focused attention on a nutritional component of treatment. Al- 

though the concept of dietary factors influencing the pathogene- 

sis of asthma is not novel (59), the impact of multiple amino acid 

deficiencies  on  asthma  severity  warrants further  investigation. 

It is worth  noting  that  asthma  occurs in 30–70% of patients 

with sickle cell disease  (60, 61), but  is often  unrecognized and 

untreated by clinicians. Relevant to the present study, we have 

recently  demonstrated that  elevated  arginase  activity and a low 

arginine  to ornithine ratio  also are  associated  with pulmonary 

complications of this disease  (40), another inflammatory condi- 

tion  in which decreased arginine  bioavailability contributes to 

a NO deficiency (62–65). In sickle cell disease, an arginine  defi- 

ciency likely develops  as a result of increased substrate demand 

for NO synthesis, perhaps coupled with increased arginase activ- 

ity. Although an explanation for the  high incidence  of asthma 

in sickle cell disease has not been identified, we suggest that 

decreased arginine bioavailability, elevated arginase activity, and 

a NO deficiency may result in an asthma-like syndrome  in sickle 

cell disease.  Further investigation of the asthmatic condition in 

sickle cell disease may provide greater insight into the pathophys- 

iology of asthma  itself. 

Asthma is estimated to affect 15 million people in the United 

States, and it is the most frequent reason  for preventable child- 

hood hospitalizations, costing billions of dollars annually  (1, 3). 

It  is a complex  syndrome  with  many  clinical  phenotypes that 

likely involve a multitude of mechanisms,  influenced  also by 

genetic   and  environmental  factors   (4).  As  the  incidence   of 

asthma rises to “epidemic levels” (66), new insights into the 

pathogenesis of asthma  are needed to identify new therapeutic 

intervention strategies.  New therapies that  maximize both argi- 

nine and NO bioavailability, including the use of arginase inhibi- 

tors and arginine  supplementation, warrant exploration. 
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